ENME489Y: REMOTE SENSING FINAL PROJECT PRESENTATION

AARON BARLEV

APRIL 30TH, 2019

LIDAR SENSOR DESIGN

THE TARGET

- Black fence with "M" cut-out
- Surrounded by brick pillars
- Back-side is impossible to map (with existing tripod)

RANGE DATA COLLECTION

```
22 command = 'raspistill -w 1280 -h 720 -o blank.jpg'
23 os.system(command)
24
25 image = cv2.imread('blank.jpg')
26 image = cv2.flip(image,-1)
```

• Read in image from Pi Camera

39 d = int(d)
40 filename = "%d.jpg" %d
41 cv2.imwrite(filename, image)

• Save image with the current IMU angle as the filename

HSV Filtering

HSV Filtering

RANGE DATA PROCESSING

22	# M fence
23	colorLower = (148, 9, 15)
24	colorUpper = (255, 255, 190)

30	# M wall 1
31	colorLower = (84, 0, 21)
32	colorUpper = (255, 255, 255)

• Declare the lower and upper HSV thresholds for the image

- Declare the ro and rpc LiDAR parameters
- Declare the laser to camera separation distance

RANGE DATA PROCESSING

135	<pre>mask = cv2.inRange(hsv, colorLower, colorUpper)</pre>
136	<pre>for x in range(0, 720, 1):</pre>
137	<pre>for y in range(0, len(mask)):</pre>
138	<pre>if mask[x][y] > 200:</pre>
139	<pre>spot.append(y)</pre>

- Process the image using the preset HSV threshold
- Iterate across vertical lines on the image, storing the location of each "bright" pixel

144	# Average all row pixels identified as the red laser line
145	<pre>if len(spot) > 1:</pre>
146	<pre>spot_int = int(np.average(spot))</pre>

• Take the average if multiple "bright" pixels are found

RANGE DATA PROCESSING

158	<pre>if spot_int >= 1:</pre>
159	
160	<pre># Ensure proper setup of pixels-from-center</pre>
161	<pre>spot = 640 - spot_int</pre>
162	
163	<pre># calculate range based on geometry</pre>
164	<pre>D = 3.28084*H/np.tan(spot_int * rpc + ro)</pre>

• Calculate the distance from LiDAR using the preset parameters

final mapping f.txt - Notenad	_	-	×
File Edit Format View Help			
-0.352636 5.672709 1.0002	252		<u>^</u>
-0.349384 5.706764 1.0062	256		
-0.344016 5.706764 1.0062	256		
-0.338647 5.706764 1.0062	256		
-0.333278 5.706764 1.0062	256		
-0.327908 5.706764 1.0062	256		
-0.322539 5.706764 1.0062	256		
-0.317168 5.706764 1.0062	256		
-0.311798 5.706764 1.0062	256		
-0.304599 5.672709 1.0002	252		
-0.299260 5.672709 1.0002	252		
-0.293921 5.672709 1.0002	252		
-0.288582 5.672709 1.0002	252		
-0.283242 5.672709 1.0002	252		
-0.277902 5.672709 1.0002	252		
-0.272562 5.672709 1.0002	252		
-0.267222 5.672709 1.0002	252		
-0.261881 5.672709 1.0002	252		
-0.256540 5.672709 1.0002	252		
-0.251199 5.672709 1.0002	252		
-0.245858 5.672709 1.0002	252		
-0.240516 5.672709 1.0002	252		~
<			>
W	indow	Ln 1, Col	100%:

3D POINT CLOUD GENERATION

- 33 xa = -1*A(:,2);
- 34 ya = -1*A(:,4); 35 - za = -1*A(:,6);
- Read in the x, y, z data from the text file

```
53 % Noise filtering
54 - yam = mode(ya);
55 - - for i = 1:size(ya)
56 - if (ya(i) > yam + var || ya(i) < yam - var)
57 - ya(i) = NaN;
58 - end
59 - end
```

• Filter out noise using a mode-variance model

3D POINT CLOUD GENERATION

92	-	x = [xa;	(xb+5);	(xc+9);	(xd+2.5)	; (xe+7.0)];
93	-	y = [ya;	yb; (yc-	1.8); (3	/d+1.2);	(ye+1.1)];
94	-	z = [za;	zb; (zc+	·1.5); (2	2d+0.7);	(ze+0.7)];

• Adjust the x, y, z position of each data set for the point cloud

104		% Plot point cloud using	pcshow()
105	-	figure(1)	
106	-	<pre>pcshow([x ,y, z]);</pre>	
107	-	<pre>title('3D Point Cloud');</pre>	
108	-	<pre>xlabel('X');</pre>	
109	-	<pre>ylabel('Y');</pre>	
110	-	<pre>zlabel('Z');</pre>	
111	-	axis equal	

- Combine the x, y, z coordinates into a single plot
- Compute using MATLAB

BEFORE FILTERING

AFTER FILTERING

3D POINT CLOUD GENERATION

